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1 Introduction and motivation

Bandit problems with continuous set of arms arise in many settings. Of particular interest for this workshop
are the cases of on-line parameter tuning or optimization of controllers based on simulations.

We formalize the problem as follows. We consider an arbitrary set X (we do not talk about measurability
issues in this extended abstract), whose elements will be referred to as arms. A decision maker “pulls”
the arms in X one at a time at discrete time steps. Each pull results in a random reward (in [0, 1]) whose
distribution depends on the arm chosen. We note f(x) the mean of the reward received while pulling arm
x. The goal of the decision maker is to choose the arms so as to maximize the sum of the rewards that he
receives. For a sequence X1, . . . , Xn of pulled arms we define the cumulative regret as

Rn = n sup
x∈X

f(x)−
n∑
t=1

f(Xt).

We can see this problem as an online optimization of the noisy function f on X .

To solve this problem we propose a practical algorithm (anytime and easy to implement) motivated by the
recent very successful tree-based optimization algorithms [5; 3; 2] and show that under weak assumptions
on f and X it enjoys a nice growth rate for ERn. In particular our assumptions on X are weaker than Auer
et al. [1] who considered X = R and the assumption on f is weaker than Kleinberg et al. [4] who assumed
f to be Lipschitzian on a metric space X .

To be more precise we assume that the decision maker knows a dissimilarity function that constraints the
shape of the mean-payoff function, in particular, the dissimilarity function is assumed to put a lower bound
on the mean-payoff function from below at each maxima. The assumption on X is that we are able to
cover the space of arms in a recursive manner, successively refining the regions in the covering such that the
diameters of these sets shrink at a known geometric rate when measured with the dissimilarity.

This allows us to obtain a regret which scales as Õ(
√
n) 1 when e.g. the space is the unit hypercube and the

mean-payoff function is locally Hölder with known exponent in the neighborhood of any maxima (which

1We write un = Õ(vu) when un = O(vn) up to a logarithmic factor.
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are in finite number) and bounded away from the maxima outside of these neighborhoods. Thus, we get
the desirable property that the rate of growth of the regret is independent of the dimensionality of the input
space.

Since the algorithm is based on ideas that have proved to be efficient, we expect it to perform well in practice
and to make a significant impact on how on-line global optimization is performed.

2 Preliminaries

Dissimilarity: We assume that X is equipped with a dissimilarity `, that is, a non-negative mapping ` :
X 2 → R satisfying `(x, x) = 0. ` will capture the smoothness of the mean-payoff function.

Tree of coverings: We consider a tree of coverings of X defined as follows :

• (h, i) (for h ≥ 0 and 1 ≤ i ≤ 2h) is the i–th node of depth h and corresponds to a subset Ph,i ⊂ X ;
• the root corresponds to the whole domain, i.e., X = P0,1;
• any parent node (h, i) is covered by its two children (h + 1, 2i − 1) and (h + 1, 2i) (note that we

will assume that the size of the regions shrinks as the depth increases).
• For any given h ≥ 0, the {Ph,i}1≤i≤2h are disjoints.

Example: A typical choice for the coverings in a cubic domain [0, 1]d is to let the domains be hyper-
rectangles. They can be obtained, e.g., in a dyadic manner, by splitting at each step hyper-rectangles in the
middle along their longest side, in an axis parallel manner; if all sides are equal, we split them along the first
axis.

3 The Hierarchical Optimistic Optimization (HOO) algorithm

3.1 Global strategy given B–values for each node

• Start with all nodes of the tree ”turned off”.
• At each round follow a path from the root to a turned-off node (h, i), where at each node along

the path we select the child (ties broken arbitrarily) with larger B–value (the B–values are defined
below).

• Pull a point in Ph,i and turn on (h, i).

3.2 Definition of B–values

• Let Nh,i(n) be the number of times we followed a path going through (h, i).
• Let µ̂h,i(n) be the empirical average of rewards collected when we followed a path going through

(h, i).
• We consider the following upper confidence bound for each turned on node :

Uh,i(n) = µ̂h,i(n) +

√
2 lnn
Nh,i(n)

+ diam(Ph,i),

where diam(Ph,i) = supx,y∈Ph,i
l(x, y).

• Then for turned-off nodes we set the B–values to be infinite and for a turned-on node :
Bh,i(n) = min

{
Uh,i(n), max

{
Bh+1,2i−1(n), Bh+1,2i(n)

}}
.
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4 Assumptions and statement of the main result

The first assumption concerns the function we want to optimize.

Assumption 1. The mean-payoff f is weakly Lipschitz with respect to `, i.e. for all x, y ∈ X ,

f∗ − f(y) ≤ f∗ − f(x) + max
{
f∗ − f(x), `(x, y)

}
. (1)

Note that weak Lipschitzness is satisfied whenever f is 1–Lipschitz, i.e., for all x, y ∈ X , one has |f(x) −
f(y)| ≤ `(x, y). On the other hand, weak Lipschitzness implies local (one-sided) 1–Lipschitzness at any
maxima. Indeed, at an optimal arm x∗ (i.e., such that f(x∗) = f∗), (1) rewrites to f(x∗) − f(y) ≤
`(x∗, y). However, weak Lipschitzness does not constraint the growth of the loss in the vicinity of other
points. Further, weak Lipschitzness, unlike Lipschitzness, does not constraint the local decrease of the loss
at any point. Thus, weak-Lipschitzness is a property that lies somewhere between a growth condition on
the loss around optimal arms and (one-sided) Lipschitzness. Note that since weak Lipschitzness is defined
with respect to a dissimilarity, it can actually capture higher-order smoothness at the optima. For example,
f(x) = 1−x2 is weak Lipschitz with the dissimilarity `(x, y) = c(x− y)2 for some appropriate constant c.

The second assumption is closely related to Assumption 2 of Auer et al. [1], who observed that the regret
of a continuum-armed bandit algorithm should depend on how fast the volume of the sets of ε-optimal arms
shrinks as ε → 0. Here, we capture this by defining a new notion, the near-optimality dimension of the
mean-payoff function (which is also related to the zooming dimension defined by Kleinberg et al. [4]).

Assumption 2. Let Xε = {x ∈ X , f∗ − f(x) ≤ ε} be the set of ε–optimal arms. We assume that Xε can
be packed with O(ε−d) balls of radius ε. We say that d is the near-optimality dimension of the mean-payoff
function.

Under these assumptions and if diam(Ph,i) tends to 0 at geometric rate with h, we prove the following
result:2

Theorem 1 (Main result). There exists a constant C(d) such that for all n ≥ 1,

ERn ≤ C(d)n(d+1)/(d+2)
(
lnn

)1/(d+2)
.

Remark 1. We can relax the weak-Lipschitz property by requiring it to hold only locally around the maxima.
In fact, at the price of increased constants, the result continues to hold if there exists ε > 0 such that (1)
holds for any x, y ∈ Xε.

5 Example

Let X = [0, 1]D and assume that the mean-reward function f is locally equivalent to a Hölder function with
degree α ∈ [0,∞) around any maxima x∗ of f (the number of maxima is assumed to be finite):

f(x∗)− f(x) = Θ(||x− x∗||α) as x→ x∗. (2)

Under this assumption, the result of Auer et al. [1] shows that for D = 1, the regret is Θ(
√
n). Our result

allows us to extend the
√
n regret rate to any dimension D. Indeed, if we choose our dissimilarity measure

to be `α(x, y) def= ||x− y||α, we may prove that f satisfies a locally weak-Lipschitz condition (as defined in
Remark 1) and that the near-optimality dimension is 0. Thus our regret is Õ(

√
n), i.e., the rate is independent

of the dimension D.
2whose precise statement as well as its proof are provided in the full-length paper but not referenced here to preserve

anonymity
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In comparison, Kleinberg et al. [4] have to satisfy a global Lipschitz assumption, thus they can not use `α
when α > 1. Indeed a function globally Lipschitz with respect to `α is essentially constant. Moreover `α
does not define a metric for α > 1. If one resort to the Euclidean metric to fulfill their requirement that f
be Lipschitz w.r.t. the metric then the regret becomes Õ(n(D(α−1)+α)/(D(α−1)+2α)), which is strictly worse
than Õ(

√
n) and in fact becomes close to the slow rate Õ(n(D+1)/(D+2)) when α is larger. Nevertheless, in

the case of α ≤ 1 they get the same regret rate.

In contrast, our result shows that under very weak constraints on the mean-payoff function and if the local
behavior of the function around its maximum (or finite number of maxima) is known then global optimization
suffers a regret of order Õ(

√
n), independent of the space dimension. As an interesting sidenote let us also

remark that our results allow different smoothness orders along different dimensions, i.e., heterogenous
smoothness spaces.
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