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Abstract

The NP-hard maximum monomial agreement (MMA) problem consists of find-
ing a single logical conjunction that best fits a weighted dataset of “positive” and
“negative” binary vectors. Computing classifiers using boosting methods involves
a maximum agreement subproblem at each iteration, although such subproblems
are typically solved by heuristic methods. Here, we describe an exact branch
and bound method for maximum agreement over Boolean monomials, improv-
ing on the earlier work of Goldberg and Shan [14]. In particular, we develop a
tighter upper bounding function and an improved branching procedure that ex-
ploits knowledge of the bound and the dataset, while having a lower branching
factor. Experimental results show that the new method is able to solve larger
problem instances and runs faster within a linear programming boosting proce-
dure applied to medium-sized datasets from the UCI repository.

1 Problem Statement and Introduction

The maximum monomial agreement (MMA) problem has applications to machine learning, data
mining [15, 14], as well as computational geometry and computer graphics [8], where it is known as
the maximum bi-chromatic discrepancy problem. As input, we will assume a given set of m binary
n-vectors in the form of a 0/1 matrix A ∈ {0, 1}m×n, along with a partition of its rows into positive
observations Ω+ ⊂ {1, ...,m} and negative observations Ω− = {1, ...,m} \ Ω+. We are also given
a function w : {1, . . . ,m} → [0,∞); w(i) specifies the weight of observation i. A monomial on
{0, 1}n is simply a function p : {0, 1}n → {0, 1} of the form

pJ,C(x) =
∏
j∈J

xj

∏
c∈C

(1− xc), (1)

where J and C are disjoint subsets of {1, . . . , n}. The monomial pJ,C is said to cover a vector
x ∈ {0, 1}n if pJ,C(x) = 1. We define the coverage of a monomial pJ,C to be

CoverA(J,C) = {i ∈ {1, ...,m} | pJ,C(Ai) = 1} ,

where Ai denotes the ith row of A. Defining the weight of a set S ⊆ {1, . . . ,m} to be w(S) =∑
i∈S w(i), the MMA problem is to find disjoint sets J,C ⊆ {1, . . . , n} maximizing

f(J,C) =
∣∣w(Cover(J,C) ∩ Ω+)− w(Cover(J,C) ∩ Ω−)

∣∣ . (2)

When the problem dimension n is part of the input, this problem is known to be NP-hard [15].
Furthermore, it has been shown [11] that even if the weights w(i) are all equal, a related problem
with a slightly different objective function is NP-hard to approximate to any factor less than 2.

In this setting, we consider only binary datasets; however, for general datasets in Rn, we note that
there is a corresponding “binarization” with dimension that is at most polynomially larger than m,
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and in practice does not tend to be much larger than n [3, 14]. A related (but not equivalent) problem
for real-valued data is the maximum box problem [9].

We are particularly interested in applications of the MMA problem to supervised learning and classi-
fication. For example, we may have m patients, with Ω+ corresponding to those having a particular
disease, and Ω− to those who do not. Each patient has n binary attributes corresponding to personal
traits or results of medical tests, and we would like to find the interaction of attributes which best
predicts presence or absence of the disease. For example, a monomial might represent a rule or
hypothesis such as (‘age’ ≥ 50) ∧ (‘blood pressure’ = ‘high’)→ ‘heart disease’.

In classification problems, monomial hypotheses have been found especially useful when used in
ensembles, typically by thresholding linear combinations of monomials. In the machine learning
community, iterative algorithms that linearly combine classifiers into a “stronger” ensemble classi-
fier originated with Schapire and Freund [12] and are referred to as boosting algorithms. In par-
ticular, boosting of monomial hypotheses has been suggested by several authors [6, 13, 14]. The
results in [14] show that boosting optimal monomial hypotheses, as opposed to heuristically gener-
ated monomials (e.g. as in SLIPPER [6]), can improve the classification performance when using a
sufficiently robust boosting algorithm, such as Servedio’s SmoothBoost [17]. Demiriz, Bennett and
Shawe-Taylor [7] suggest a boosting method for general weak learner hypotheses (not necessarily
monomials), based on column generation linear programming techniques, using a robust reformula-
tion of an LP model for finding a separating hyperplane; see also [16]. In their column generation
subproblem, the objective is precisely that of maximum agreement; if the space of possible weak
learners consists of all monomials, the subproblem is precisely to maximize (2). Monomial hypothe-
ses (also called logical patterns) are also a basic building block in the logical analysis of data (LAD)
methodology [4], where linear programming techniques are also used to compute the discriminant
function.

2 Branch and bound

One possible approach to exactly solving the MMA is to formulate it as an equivalent integer linear
program, and solve it with a standard integer programming solver. However, we have found it is
more efficient to solve the problem by a specialized branch-and-bound algorithm. The key elements
of a branch-and-bound algorithm are the definition of subproblems that represent sets of possible
solutions, a method for computing a bound on the objective value of all solutions represented by a
subproblem, and a branching procedure for subdividing subproblems into smaller ones.

We characterize each subproblem as a partition (J,C,E, F ) of {1, . . . , n}. As in (1), J and C
respectively represent the literals which must be in the monomial, and whose complements must be
in the monomial. E indicates a set of “excluded” literals: neither they nor their complements may
appear in the monomial. Finally, F = {1, . . . , n}\(J ∪ C ∪ E) is the set of “free”, undetermined
literals. The set of monomials corresponding to subproblem (J,C,E, F ) is given by

P (J,C,E) = {(J ′, C ′) | J ′ ⊇ J, C ′ ⊇ C, and J ′, C ′, E are disjoint} . (3)

The branch-and-bound search begins with a priority queue Q containing the single root subprob-
lem (∅, ∅, ∅, {1 . . . , n}), which corresponds to the set of all possible monomials. At each iteration,
we remove a subproblem (J,C,E, F ) from Q and, unless it is fathomed, that is, its upper bound
u(J,C,E) ≤ f(J∗, C∗) for some known J∗, C∗, we further subdivide (branch) it into smaller sub-
problems. For the fathoming test to be valid, the upper bound function u should have the property

u(J,C,E) ≥ f(J ′, C ′) ∀ (J ′, C ′) ∈ P (J,C,E). (4)

2.1 The upper bound function

In the special case that F = ∅, the set P (J,C,E) is a singleton consisting only of (J,C), and we
can take u(J,C,E) = f(J,C). If F 6= ∅, we must use some other function satisfying (4). Goldberg
and Shan [14] suggest the simple bound u(J,C,E) = ugs(J,C), where

ugs(J,C) = max{w(Cover(J,C) ∩ Ω+), w(Cover(J,C) ∩ Ω−)} (5)

It is straightforward to establish that this bound satisfies (4). However, it essentially ignores the
information in the set E. To obtain a stronger bound, we now exploit the information in E:
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Definition 2.1. Two binary vectors x, y ∈ {0, 1}n are inseparable with respect to a set E ⊆
{1, ..., n}, if, for all j ∈ {1, ..., n} \ E, one has xj = yj .

Inseparability is an equivalence relation: any set E ⊆ {1, . . . , n} thus partitions {1, ...,m} into
equivalence classes, i and i′ being in the same class when the observation Ai is inseparable from
the observation Ai′ . Let us denote these classes by V E

1 , V E
2 , ..., V E

q(E), where 1 ≤ q(E) ≤ m. A
similar technique has been used by De Bontridder et al. [2] in the context of the minimum test cover
problem. Let

w+
` (J,C,E) = w(V E

` ∩ Cover(J,C) ∩ Ω+) w+(J,C) = w(Cover(J,C) ∩ Ω+)

w−` (J,C,E) = w(V E
` ∩ Cover(J,C) ∩ Ω−) w−(J,C) = w(Cover(J,C) ∩ Ω−)

for ` = 1, . . . , q(E), and note that

f(J,C) =
∣∣w+(J,C)− w−(J,C)

∣∣ =

∣∣∣∣∣∣
q(E)∑
`=1

(w+
` (J,C,E)− w−` (J,C,E))

∣∣∣∣∣∣ . (6)

We will call a monomial positive if w+(J,C) ≥ w−(J,C), and negative if w+(J,C) < w−(J,C).
Positive monomials cover more weight of positive than negative observations, and negative mono-
mials the reverse; we include ties in the positive class.

Now consider some (J ′, C ′) ∈ P (J,C,E), assume it is positive, and fix some ` ∈ {1, . . . , q(E)}.
Because the observations in the equivalence class V E

` are inseparable with respect to E, the mono-
mial pJ′,C′(x) must either cover all of V E

` , or cover none of it. Considering the `th term in the second
expression in (6), we see that the largest value of f(J ′, C ′) would result if pJ′,C′(x) covers the entire
class V E

` whenever w+
` (J,C,E) ≥ w−` (J,C,E), obtaining a value of w+

` (J,C,E)−w−` (J,C,E),
and otherwise does not cover the the entire class V E

` , obtaining the value 0. Thus, if (J ′, C ′) is
positive, we have

f(J ′, C ′) ≤
q(E)∑
`=1

(
w+

` (J,C,E)− w−` (J,C,E)
)

+
,

where (·)+ denotes the positive part of a number. We can demonstrate a similar relation for the case
that (J ′, C ′) is negative, and combining the two cases, we derive the following upper bound function
satisfying (4):

u(J,C,E) = max


∑q(E)

`=1

(
w+

` (J,C,E)− w−` (J,C,E)
)
+
,∑q(E)

`=1

(
w−` (J,C,E)− w+

` (J,C,E)
)
+

 (7)

= ugs(J,C)−
q(E)∑
`=1

min{w+
` (J,C,E), w−` (J,C,E)} (8)

For brevity, we omit the (fairly straightforward) proof that (7) and (8) are equivalent. We define
φ(J,C,E) =

∑q(E)
`=1 min{w+

` (J,C,E), w−` (J,C,E)}, the second term in (8), to be the insepara-
bility of E with respect to J and C. Unless φ(J,C,E) = 0, the bound u(J,C,E) is strictly tighter
than ugs(J,C). If φ(J,C,E) = 0, then all the sets Cover(J,C) ∩ V E

` , for ` = 1, . . . , q(E), are
homogeneous, meaning that they contain only positive or only negative observations (with positive
weights).

Both of the bounds ugs(R,C) and (7) may be computed in O(mn) time in the worst case (although
we omit the details here). However, computing the equivalence classes {V E

` } in O(mn) time re-
quires a radix sort, which is Θ(mn). Computing ugs(R,C) involves n set intersection operations
which tend to be much faster than O(m) in practice. Thus, it may be more practically efficient to
first compute ugs(R,C), and if that does not fathom the subproblem (J,C,E, F ), then compute
φ(J,C,E) and thus (7).

2.2 The branching procedure

Our branching procedure works as follows: given a subproblem (J,C,E, F ), we select k distinct
elements j1, . . . , jk of F , where 1 ≤ k ≤ |F |. In our branching step, we create 2k + 1 smaller
subproblems respectively representing the following subsets of P (J,C,E):
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• The subset of monomials in which none of xj1 , . . . , xjk
appear.

• For t = 1, . . . , k the subset of monomials in which xjt
is the first in the sequence xj1 , . . . , xjk

to appear, uncomplemented; xj1 , . . . , xjt−1 are excluded from further consideration.
• For t = 1, . . . , k the subset of monomials in which xjt is the first in the sequence xj1 , . . . , xjk

to appear, and is complemented; xj1 , . . . , xjt−1 are excluded from further consideration.

These subsets clearly form a partition of P (J,C,E). In our notation, the corresponding subproblems
are represented by the respective 4-tuples in lines 13, 15, and 16 of Algorithm 1 below. We have
significant latitude in choosing k for each subproblem. At present, we simply choose some α ∈
(0, 1], and set k = dα |F |e for each subproblem; we have also experimented with fixing k = 1.

Motivated by (8), we attempt for a given k to choose j1, . . . , jk to maximize the inseparability
φ(J,C,E∪{j1, . . . , jk}). Although we omit the details here, we have proved that exactly maximiz-
ing φ(J,C,E ∪ {j1, . . . , jk}) is itselfNP-hard. However, we are also able to show that φ(J,C,E)
is a supermodular function of E, motivating the use of a reverse greedy heuristic (or “stingy” algo-
rithm [5]). Conceptually, we set E′ ← F , and then remove elements one-by-one from E′, greedily
with respect to maximizing φ(J,C,E ∪ E′), until |E′| = k. We then take {j1, . . . , jk} = E′, and
determine the ordering j1, . . . , jk by a similar reverse greedy procedure.

We now consider the case k = 1, in which case our branching scheme generates three children.
In this case, we implement an alternative, “strong” branching method: for each possible branching
feature j ∈ F , we calculate the bounds u(J ∪{j}, C,E), u(J,C ∪{j}, E), and u(J,C,E ∪{j}) of
the three resulting subproblems. For each j, we place these bounds in a triple uj with elements sorted
in descending order, and branch on some feature j that lexically minimizes uj . This approach is not
only faster than the reverse greedy method, but also more practically effective at pruning search
nodes. One reason for the efficiency of this alternative branching strategy is that it considers the
bounds of all three prospective children, and not just the bound of the child (J,C,E∪{j}, F \{j}).
Algorithm 1 outlines our entire branch-and-bound algorithm; there, our procedure for choosing
j1, . . . , jk is called exclude.

Algorithm 1 MaxMonom
1: Input: Sets Ω+,Ω−, and m× n matrix A.
2: Output: Best solution value l and corresponding monomial given by (J∗, C∗).
3: Q← {(∅, ∅, ∅, {1 . . . , n})}
4: l← −∞
5: while Q 6= ∅ do
6: Remove subproblem S = (J,C,E, F ) from Q
7: if u(J,C,E) > l then
8: if f(J,C) > l then
9: (J∗, C∗)← (J,C)

10: l← f(J∗, C∗)
11: end if
12: (j1, ..., jk)← exclude(J,C, F )
13: Insert (J,C,E ∪ {j1, ..., jk}, F \ {j1, ..., jk}) into Q
14: for t ∈ {1, . . . , k} do
15: Insert (J ∪ {jt}, C,E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) into Q
16: Insert (J,C ∪ {jt}, E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) into Q
17: end for
18: end if
19: end while

We note that in the earlier branch-and-bound method of [14], the branching procedure is essentially
the special case that k is always chosen as large as possible, that is, k = |F |, and j1, . . . , jk are
ordered so that j1 < j2 < · · · < jk. In this case, the (J,C,E ∪ {j1, . . . , jk}, F\{j1, . . . , jk}) child
always represents exactly one monomial, allowing it to be immediately evaluated and implicitly
dropped from the search tree.

In lines 15 and 16 of Algorithm 1, we apply a few simple pruning rules that significantly im-
prove practical performance: first, we need not insert a subproblem into Q if it is already fath-
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omed. Second, it can be shown that if Cover(J ∪ {jt}, C) = Cover(J,C), the subproblem
(J ∪ {jt}, C,E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) cannot contain a solution strictly better than
those in (J,C,E ∪ {j1, . . . , jt}, F \ {j1, . . . , jt}). Thus, such a subproblem may be dropped
from consideration without insertion into Q. Finally, a similar result holds for the subproblem
(J,C ∪ {jt}, E ∪ {j1, . . . , jt−1}, F \ {j1, . . . , jt}) when Cover(J,C ∪ {jt}) = Cover(J,C).

3 Experimental study

We implemented the procedure of Algorithm 1 in C++ using the the open-source PEBBL branch-
and-bound library [10]. We ran our experiments on a workstation with 3.00 GHz Intel Xeon proces-
sors and 800MHz memory (running only in serial, although PEBBL is capable of parallelism).

Table 1 shows our experimental results using Algorithm 1 as a weak learning algorithm inside the
LP-Boost boosting procedure [7], applied to the the UCI [1] binary dataset SPECTHRT and bina-
rized versions of additional UCI datasets. We configured our binarization procedure to obtain a
larger number of variables (as indicated by n in the table) than is customary for most binary feature
selection methods (e.g. [3]).

The LP-Boost algorithm requires a “soft margin” penalty parameter D. We selected D = 3/m,
which in our computational experience provides good classification and generalization performance.
We compare four different algorithm configurations:

• An algorithm equivalent to [14], in which k = |F |, using only the ugs upper bound function
• Algorithm 1, with k = |F | and the bound (7)
• Algorithm 1, with k = d|F | /2e and the bound (7).
• Algorithm 1, with k = 1, the bound (7), and the “strong” k = 1 branching rule described above.

Note that k = 1 corresponds to a ternary search tree.

We used a best-first queueing discipline with the queue size limited to at most 500,000 subproblems.
We also limited the CPU time of each branch-and-bound search to 30 minutes. LP-Boost starts with
the weights w(i) equal for all i, but subsequently adjusts the observation weights based on the
dual variables of its LP formulation’s separation constraints. We ran each case for 30 iterations, or
until a subproblem encountered the queue size or branch-and-bound time limit. As is well-known
in practice, boosting algorithms tend to focus their later iterations on observations that are more
difficult to classify. In our case, the later iterations produce longer monomials whose |Cover(J,C)|
is smaller. The later iterations also tend to have larger search trees and longer running times.

Two conclusions appear to follow from the results in Table 1. First, compared with [14], both our
tighter bound and our new reverse greedy branching scheme significantly decrease the number of
search nodes required; they allow larger problems to be solved, and improve running time in all
but the easiest cases involving SPECTHRT. Second, choosing an intermediate number of branching
features k = d|F | /2e performs better in terms of search nodes than the two extreme strategies
k = |F | and k = 1; although space does not permit us to report full results, we also found that
k = d|F | /2e yields smaller search trees than k = d3 |F | /4e and k = d|F | /4e. Finally, although
taking k = 1 is not the best strategy in terms of search tree size, its specialized, faster branching
procedure performs well enough that k = 1 is clearly best in terms of runtime. Thus, our new bound
coupled with the k = 1 ternary branching scheme significantly outperform the method of [14] for
larger datasets, and in later boosting iterations, when the weights become more “difficult”.
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