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Abstract

In this paper we propose a general framework to characterize and solve the op-
timization problems underlying a large class of sparsity based regularization al-
gorithms. More precisely, we study the minimization of learning functionals that
are sum of a differentiable data term and a convex non differentiable penalty. Non
convex penalties has recently become popular since they allow to enforce some
kind of sparsity in the solution. Leveraging on the theory of Fenchel duality and
subdifferential calculus, we derive optimality conditions for the regularized solu-
tion and propose a simple yet general iterative projection algorithm whose conver-
gence to the optimal solution can be proven. The power of the general framework
is illustrated, considering several examples of regularization schemes including
multi-task and multi-kernel learning.

1 Introduction

In this paper we use convex analysis tools to propose a general framework for solving convex non
differentiable minimization problems underlying many regularized learning algorithms. The su-
pervised learning problem amounts to find an unknown functional relation, given a training set of
input-output pairs that are randomly sampled and corrupted by noise. Learning schemes which are
simply tailored to minimize a data fit objective term, typically lead to unstable solutions that do not
generalize to new examples. An effective way to restore stability and find meaningful solutions is to
resort to regularization techniques. This class of methods typically involves the minimization of an
objective function which is the sum of two terms. The first one is a data fit term, whereas the second
one is a penalty that favors “simple” models. Approaches based on Tikhonov regularization, includ-
ing Support Vector Machines or regularized Least Squares, are probably the most popular examples
and are based on convex differentiable penalties.

Recently methods such as the Lasso [Tibshirani, 1996] – based on `1 regularization– and variants
like elastic net or group lasso, received considerable attention because of their property to provide
sparse solutions. The key towards sparsity properties is considering convex non differentiable penal-
ties. More generally this kind of penalties have been used to deal with complex model for multi-task
and multi-kernel learning.

In this paper we refer to the general class of methods using convex non differentiable penalties as
sparsity based regularization algorithms and we study the problem of computing the regularized so-
lution. The presence of a non differentiable penalty makes the solution of the minimization problem
non trivial and quadratic programming techniques are often used. The contribution of our work is
to show that, under fairly mild assumption on the penalty (see below), sparsity based algorithms can
be studied within a unifying framework, that allows to develop a simple iterative procedure which is
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very easy to implement and converges to the optimal solution. Using Fenchel duality we decouple
the contributions due to the data, and the penalty terms: at each iteration the gradient of the data
term is projected on a set which is defined by the considered penalty. The iterative soft thresholding
method recently proposed to solve the Lasso minimization is a special case of our framework and
several other examples can be given.

2 Iterative Projected Algorithm

Given a a Hilbert spaceH and a fixed positive number τ , we consider the problem of computing:

f∗ = argmin
f∈H

E(f) = argmin
f∈H

F (f) + 2τJ(f), (1)

where F, J : H → R can be interpreted as the data and penalty terms, respectively. In the following,
F is assumed to be differentiable and strictly convex, while J is required to be convex and one-
homogeneous,

J(λf) = λJ(f),
for all f ∈ H and λ ∈ R+. Before presenting our results we give several examples for F and J .
Loss term. In the context of supervised learning, the most common choice for the data term F is
the empirical risk associated to some cost function ` : R× Y → R+, i.e.

F (f) =
1
n

n∑
i=1

`(f(xi), yi).

Examples of convex and differentiable loss functions are the exponential loss e−yf(x), the logistic
loss log(1 + e−yf(x)), and especially the square loss (y − f(x))2. In general, the corresponding
empirical risk will be only convex and strict convexity can be ensured under further assumption on
the data. An alternative way to enforce strict convexity is to add the strictly convex term µ ‖f‖2H for
some small positive parameter µ. This can be seen as a preconditioning of the problem and – if µ
is small – one can see empirically that the solution does not change. Another important example of
loss function is F (f) = ‖Af − y‖2Y , where A : H → Y is a bounded linear operator between the
Hilbert spacesH and Y , and y ∈ Y is a measurement function from which we aim at reconstructing
f . This latter choice is general enough to deal with eigen-problems underlying many unsupervised
methods such as principal component analysis or spectral clustering.
Penalty term. The assumptions on the penalty– convexity and one-homogeneity– are satisfied by a
general class of penalties that are sum of norms in distinct Euclidean spaces:

J(f) =
p∑
k=1

||Jk(f)||, (2)

where, for all k, Jk : H → Rmk is a bounded linear operator and ‖·‖ is the standard Euclidean
norm in Rmk . For example, if the estimator is assumed to be described by a generalized linear model
f(x) =

∑p
j=1 ψj(x)βj , the `1 norm of the coefficients is a special case of the above penalty J(β) =∑p

j=1 |βj |. If the coefficients are divided into “blocks”, a penalty of the form (2), corresponding to
the sum of the euclidean norm of each block, has been proposed in the so called group lasso and
composite absolute penalties algorithms. Similar penalties have been used for multiple task learning
(see the following) and sparse principal component analysis. Another example is multiple kernel
learning where the estimator is assumed to be f = f1 + · · ·+ fp and every fj belongs to a specific
RKHSHj with kernel Kj and norm ‖·‖j . In this case the penalty term takes the form

∑p
j=1 ‖fj‖j .

The above examples are only a few of the specific instances of problem (1) satisfying the required
assumptions but one can see how loosely related learning schemes can be cast within a common
general framework. In next section we show how the corresponding optimization problem can be
solved using the same simple procedure.

2.1 Fixed Point Equation via Fenchel Duality

In this section we describe an iterative scheme to compute the optimal solution of problem (1).
The proposed procedure is summarized in Algorithm 2.1, where K denotes the subdifferential
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[Ekeland and Temam, 1976] of J evaluated at zero i.e. K := ∂J(0), and πλK : H → H is the
projection on λK ⊂ H, λ ∈ R+. The parameter σ can be seen as a step-size, whose choice is
crucial to ensure convergence.

Algorithm 2.1 General Algorithm
initialize σ, τ > 0
set f0 = 0
while stopping criterion is not met do
p = p+ 1

fp =
(
I − π τ

σK

)(
fp−1 − 1

2σ
∇F (fp−1)

)
(3)

end while

As we mentioned before, our method decouples the contributions of the two functionals J and F .
At each iteration of the algorithm the projection πλK – which is entirely characterized by J – is
applied to a term that depends only on F . It is worth noting that this line of reasoning is developed
in a systematic way in the so called forward-backward splitting methods. In our approach, Fenchel
duality ([Ekeland and Temam, 1976]) is the key tool that, combined with one-homogeneity, allows
us to characterize the contribution of J .

In the following we briefly describe the key steps toward deriving Algorithm 2.1. The first step is
contained in Theorem 1 below showing that the optimal solution of problem (1) is the unique fixed
point of a family of functionals parameterized by the step size σ,

Theorem 1. Given τ > 0, F : H → R strictly convex and differentiable and J : H → R convex
and one-homogeneous, the minimizer f∗ of E is the unique fixed point of the map Tσ : H → H

Tσ(f) =
(
I − π τ

σK

)(
f − 1

2σ
∇F (f)

)
. (4)

The next step is to show convergence of the successive approximation scheme derived from the
fixed point equation. This latter result is a consequence of the Banach Fixed Point Theorem. In
fact, if for some σ > 0 the map Tσ is a contractive map – i.e. there exists Lσ < 1 such that
‖Tσ(f)− Tσ(f ′)‖ ≤ Lσ ‖f − f ′‖ for all f, f ′ ∈ H – then Banach Fixed point Theorem immedi-
ately implies the Algorithm 2.1 converges to f∗ and the following inequality describes the speed of
convergence:

‖f∗ − fp‖ ≤
Lpσ

1− Lσ
‖f1 − f0‖ .

For all the examples of loss functions we previously described, the value of Lσ can be explicitly
computed and step size can be chosen as the value minimizing Lσ . Clearly in this case it is possible
to get explicit convergence rates and hence a stopping rule for the iterative procedure.
Finally the last step is to show that the projection πλK can be effectively computed. When the
penalty is of the form 2, it is possible to prove that πλK(g) = λv̄ with

v̄ = argmin
v∈H,‖Jkv‖Rmk≤1

‖λv − g‖2H . (5)

Detailed proofs of the above results will appear in a forthcoming longer version of this paper.

3 Examples

In this section we illustrate our results in a few special cases of interest in machine learning: elastic
net regularization and multi-task and multiple kernel learning.
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3.1 Elastic Net Regularization

Elastic net regularization [Zou and Hastie, 2005] is given by the minimization of the functional:

E(`1`2)(β) = ‖Ψβ − y‖2 + µ

M∑
j=1

β2
j + 2τ

M∑
j=1

wj |βj |, (6)

where Ψ is a n×M matrix, β, y are the vectors of coefficients and measurements respectively, and
(wj)Mj=1 are set of positive weights. The matrix Ψ can be thought as given by the features ψj in the
dictionary evaluated at some point x1, . . . , xn. The minimization of the above functional reduces to
the Lasso algorithm [Tibshirani, 1996] if µ = 0.
If we set mk = 1 and Jkβ = wkβk ∀k = 1, . . . ,M (see equation 2) then the projection 5 can be
directly computed from the regression coefficients βj , and the iteration 3 becomes:

βp = S τ
σ

((I − µ

σ
)βp−1 +

1
σ

ΨT (y −Ψβp−1)), (7)

where S τ
σ

is the iterated soft-thresholding operator defined component-wise as (S τ
σ

(β))j =
sign(βj)(βj − τ

σ )+ [Daubechies et al., 2004]. The above results has been derived with a different
approach in [De Mol et al., 2008].

3.2 Sparse multitask regularization

Learning multiple tasks simultaneously has been shown to improve performance relative to
learning each task independently, when the tasks are related. Given T tasks modelled as
ft(x) =

∑d
j=1 βj,tψj(x) for t = 1, . . . , T , we consider the following minimization problem

[Obozinski et al., 2006]

E(MT )(β) =
T∑
t=1

nt∑
i=1

(ψ(xt,i)βt − yt,i)2 + 2τ
d∑
j=1

√√√√ T∑
t=1

β2
t,j . (8)

If we let,

β = (βT1 , . . . , β
T
T )T

Ψ = diag(Ψ1, . . . ,ΨT ), [Ψt]ij = ψj(xi).

equation 3 in algorithm 2.1 is replaced by task-wise soft thresholding

βp = S τ
σ

(βp−1 +
1
σ

ΨT (y −Ψβp−1)).

where the S τ
σ

is the iterative soft-thresholding operator defined in the previous subsection.

3.3 Multiple kernel learning

Multiple kernel learning is the process of finding an optimal kernel from a prescribed convex
set, K, of basis kernels, kj , for learning a real-valued function by regularization. When the
set K is the convex hull of a finite number of kernels k1, . . . , kM , multiple kernel learning
[Micchelli and Pontil, 2005] amounts to considering

E(MK)(f) =
n∑
i=1

 p∑
j=1

fj(xi)− yi

2

+ 2τ
p∑
j=1

‖fj‖Hj (9)

where f = f1 + · · ·+fp and every fj belongs to a specific RKHSHj with kernelKj and norm ‖·‖j .
A form of the representer theorem shows that the solution to the above problem can be expressed as

f∗(·) =

(
n∑
i=1

α1,ik(xi, ·), . . . ,
n∑
i=1

αp,ik(xi, ·)

)
,

so that the optimization problem is finite dimensional. Introducing the notation
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α = (α1, . . . , αp) with αj = (αj,1, . . . , αj,n),

k(x) = (k1(x), . . . ,kM (x))T with kj(x) = (kj(x1, x), . . . , kj(xn, x)),
K = (K1, . . . ,Kp) with [Kj ]ii′ = kj(xi, x′i).

one can write the optimal solution as f∗(x) = (αT1 k1(x), . . . , αTp kp(x)). With little work one can
see that, for functions of this kind, equation 3 becomes:

Tσ(f) =
(
I − πτ/σK

)((
α− 1

σn
KT (Kα− y)

)T
k

)
. (10)

In this case, the projection πτ/σK can be computed block-wise, across all the regression coefficients
relative to the same fj as:

v̄j = min
{

1,
‖Jjg‖
λ

}
Jjg
‖Jjg‖

= min

1,

√
αTj Kjαj

λ

 αTj kj√
αTj Kjαj

where g = (αT1 k1, . . . , α
T
p kp) as in (10).

4 Conclusions

In this paper we show that a large class of regularization schemes using non differentiable penalties
can be solved using an iterative projection algorithm. The proposed procedure is extremely simple
and converges to the optimal solution. The main operations involved in each iteration are matrix
vector multiplications that can be performed extremely fast in many situation. The general results
are illustrated for multi-task and multi-kernel learning.

Future work is aimed at further refining the iterative procedure to obtain faster algorithms. Indeed,
one can consider data dependent choice of the step size or continuation methods to reduce the num-
ber of needed iteration, at the price of a considerably more involved analysis.
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