Tuning Optimizers for Time-Constrained Problems
using Reinforcement Learning

Paul Ruvolo Ian Fasel
Department of Computer Science Department of Computer Sciences
University of California San Diego University of Texas at Austin
La Jolla, CA 92093 ianfasel@cs.utexas.edu

pruvolo@cs.ucsd.edu

Javier Movellan
Machine Perception Laboratory
University of California San Diego
movellan@mplab.ucsd.edu

Abstract

Many popular optimization algorithms, like the Levenberg-Marquardt algorithm
(LMA), use heuristic-based “controllers” that modulate the behavior of the op-
timizer during the optimization process. For example, in the LMA a damping
parameter A is dynamically modified based on a set of rules that were developed
using various heuristic arguments. Here we show that a modern reinforcement
learning technique utilizing a very simple state space can dramatically improve
the performance of general purpose optimizers, like the LMA, on problems where
the number of function evaluations allowed is constrained by a budget. Results
are given on both classical non-linear optimization problems as well as a difficult
computer vision task. Interestingly the controllers learned for a particular opti-
mization domain work well on other optimization domains. Thus, the controller
appeared to have extracted optimization rules that were not just domain specific
but generalized across a range of optimization domains.

1 Introduction

Most popular optimization algorithms, like the Levenberg-Marquardt algorithm (LMA) use simple
“controllers” that modulate the behavior of the optimization algorithm based on the state of the
optimization process. For example, in the LMA a damping factor A smoothly modifies the algorithm
to make it behave more like standard gradient descent versus more like Gauss-Newton optimization
[1, 2]. The LMA uses the following heuristic for controlling A: If an iteration of the LMA with
the current damping factor A\; reduces the error then the new parameters produced by the LMA
iteration are accepted and the damping factor is divided by a constant term 7 > 0, i.e., \;y1 = A\t /7.
Otherwise, if the error is not reduced, the new parameters are not accepted, the damping factor is
multiplied by 1, and the LMA iteration is repeated with the new damping parameter. While various
heuristic arguments have been used to justify this particular way of controlling the damping factor,
it is not clear whether this “controller” is optimal in any way or whether it can be significantly
improved.

Improving the performance of off-the-shelf optimizers is particularly important for time-constrained
optimization problems. For example the LMA algorithm has become popular for many real-time
computer vision problems [3, 4, 5], such as object tracking and feature tracking in video where only



a fixed amount of time can be allocated to the optimizer on each incoming video frame. Time con-
strained optimization is in fact becoming an increasingly important problem in applications such as
operations research, robotics, and machine perception. Given the special properties of time con-
strained optimization problems it is likely that the heuristic-based controllers used in off-the-shelf
optimizers may not be particularly efficient. Additionally, standard techniques for non-linear opti-
mization like the LMA do not address issues such as when to stop a fruitless local search or when to
revisit a previously visited part of the parameter space.

Reinforcement learning (RL) is a machine learning approach to learn optimal controllers by exam-
ples and thus is an obvious candidate to improve the heuristic-based controllers used in the most
popular and heavily used optimization algorithms. An advantage of RL methods over other ap-
proaches to optimal control is that they do not require prior knowledge of the underlying system
dynamics and the system designer is free to choose reward metrics that best match the desiderata for
controller performance (e.g., minimum loss within a fixed amount of time).

2 Related Work

The idea of using RL in optimization problems is not new [6, 7, 8, 9]. However, previous approaches
have focused on using RL methods to develop problem-specific optimizers for NP-complete prob-
lems. Here our focus is on using RL methods to modify the controllers implicit in the most popular
and heavily used optimization algorithms. In particular our goal is to make these algorithms more
efficient for optimization on time budget problems. As we will soon show, a simple RL approach
can result in dramatic improvements in performance over these popular optimization packages.

3 Learning to Optimize Non-linear Least Squares Functions with a Budget

The value of a given optimizer is defined as the expected percentage reduction in overall loss from
the initial point to the best point the optimizer finds within a fixed budget of optimization steps. This
criterion suggests a natural one-step reward function where L is a loss function we are trying to
minimize, B is the budget of function evaluations, I is the indicator function, x¢ is the initial point
visited in the current optimization episode, and x,, is the point with the lowest loss visited in the
current optimization episode:

1

re = 1k < B) X T(L(w) < L(wopr)) X (Lwopt) = L(ow) X 70

(1
While there are a number of possible RL algorithms for learning an optimizer control policy, we
chose to employ Least-Squares Policy Iteration (LSPI) [10]. LSPI is an iterative reinforcement
learning procedure that repeatedly applies the following two steps until convergence: approximating
the action-value function as a linear combination of a fixed set of basis functions and then improving
the current policy greedily over the approximate action-value function. The bases are arbitrary
functions of the state and action. The method is efficient in terms of the number of interactions
required with the dynamical system and can reuse the same set of samples to evaluate multiple
policies, which is a crucial difference between LSPI and earlier methods like LSTD. The output of
the LSPI procedure is a weight vector that defines the action-value function of the optimal policy as
a linear combination of the basis vectors.

In this paper, we focus on a set of classical non-linear optimization problems, including examples
such as the Kowalik and Osborne function, Scaled Meyer function, as well as a ”smile-detection”
computer vision problem. Each optimization problem takes the form of a non-linear objective func-
tion with a least squares error criterion and thus is well-suited to Levenberg-Marquardt style opti-
mization. The action space we consider in our experiments consists of adjustments to the damping
factor (maintain, decrease by a multiplicative factor, or increase by a multiplicative factor) used in
the LMA, the decision of whether or not to throw away the last descent step, along with two actions
that are not available to the LMA. These additional actions include moving to a new random point
in the domain of the objective function and also returning to the best point found so far and per-
forming one descent step using the LMA (using the current damping factor). The number of actions
available at each step is 8 (6 for various combinations of adjustments to A and returning the previous
iterate along with the 2 additional actions just described). Our goal for choosing the state space



Initialize a policy 7 that explores randomly

S—{}

for i = 1tondo
Generate a random optimization problem U
Optimize U for T time steps using policy 7y and generate samples V' € (s, a,r,s')”
S—SuV

end for

repeat
Construct the approximate action-value function Q;* using the samples S
Set 711 to be the one step policy improvement of 7; using Q7"
t—t+1

until Q7_, ~ QF

return 7

Figure 1: Our algorithm for learning controllers for optimization on a budget. The construction
of the approximate action-value function and the policy improvement step are performed using the
techniques outlined in [10].

was to allow the controller to select actions from a set of possible actions that have been seen to be
useful when used heuristically in existing optimization algorithms. The RL algorithm can then learn
an optimization strategy that essentially blends or switches between different types of optimization
strategies in a manner best suited to the class of problems it is trained on and its remaining opti-
mization budget. In this case, the first four actions are based on the existing LM heuristics, and the
other two are sometimes used in other optimization methods. We could also have added actions that
appear in optimization routines such as conjugate-gradient steps or parameter mutations based on
genetic-algorithms.

The state space used to make the action decision includes a fixed-length window of history that
encodes whether a particular step in the past increased or decreased the residual error from the
previous iterate. This window is set to size 2 for most of our experiments, however, we did evaluate
windows of size 1, 2, and 3 (see Figure 3). Also included in the state space is the amount of function
evaluations left in our budget and a problem-specific state feature described in Section 4.2.

The state and action space are mapped through a collection of fixed basis functions which the LSPI
algorithm combines linearly to approximate the optimal action-value function. For most applica-
tions of LSPI these functions consist of radial-basis functions distributed throughout the continuous
state and action space. The basis we use in our problem treats each action independently and thus
constructs a tuple of basis functions for each action. To encode the number of evaluations left in
the optimization episode, we use a collection of radial-basis functions centered at different values
of budget remaining (specifically we use basis functions spaced at 4 step intervals with a band-
width of .3). The history window of whether the loss went up or down during recent iterations of
the algorithm is represented as a d-dimensional binary vector where d is the length of history win-
dow considered. For the facial expression recognition task the tuple includes an additional basis
described in Section 4.2.

Our method for learning an optimization controller consists of two phases. In the first phase samples
are collected through interactions between a random optimization controller and an optimization
problem in a series of fixed length optimization episodes. These samples are tuples of the form
(s,a,r,s’) where s’ denotes the state arrived at when action a was executed starting from state s
and reward r was received. The second phase of our algorithm applies LSPI to learn an action-
value function and implicitly an optimal policy (which is given by the greedy maximization of the
action-value function over actions for a given state). A sketch of our algorithm is given in Figure 1.

4 Experiments

We demonstrate the ability of our method to both achieve superior performance to off the shelf non-
linear optimization techniques as well as provide insight into the specific policies and action-value
functions learned.



Vertical

Horizontal Vert Offset
Offset _ Crossbar

Filter
Height

Filter Width

Figure 2: The parameterization of the feature space. The position of the cross-hairs in the middle
of the box filter can freely float. This added generality allows for the features proposed in [12] to
be generated as special cases (right). The weighting coefficients for the four boxes (depicted in a
checkerboard pattern) are determined by linear regression between filter outputs of each box and the
labels of the training set.

4.1 Classical Nonlinear Least Squares Problems

In order to validate our approach we apply it to a dataset of classical non-linear optimization prob-
lems [11]. This dataset of problems includes famous optimization problems that cover a wide variety
of non-linear behavior. Examples include the Kowalik and Osborne function and the Scaled Meyer
function. Our method is able to learn a policy which results in a 6% gain in performance (measured
in total reduction in loss from the starting point) when compared to the LMA when the budget of
function evaluations is set to 5.

4.2 Learning to Classify Facial Expressions

We learn a detector for the presence or absence of a smile using the pixel intensities of an image
patch containing a face. We accomplish this by employing the sequential regression procedure L2-
boost [13]. L2-boost creates a strong classifier by iteratively fitting the residuals of the current model
over a collection of weak-learners (in this case a set of parameterized box-filter features described
below) which are combined linearly in the final classifier. The basis space for LSPI is augmented for
this task by included a basis that specifies the number of features already selected by the L2-boost
procedure.

The filter response of a box filter is computed by taking the sum of the pixel intensities in a particular
box, multiplying this sum by a weighting coefficient, and subsequently summing over the outputs
of each box. These filters have been successful for face detection in [12] and have also shown
promise for recognizing facial expressions when combined using boosting methods. We frame the
problem of feature selection as an optimization procedure over a continuous parameter space. The
6 dimensional parameter space defines an infinite set of box-filters that includes many of those
proposed in [12] as a special case (see Figure 2). The 6 dimensions of the feature space specify the
horizontal offset, the filter height, the vertical cross bar position, the vertical offset, the horizontal
crossbar, and the filter width of the box filter. The weighting coefficients are determined by standard
linear regression between the outputs of the four-boxes for a particular filter and the residuals for
each image.

For each trial a subset of 1,000 images from the GENKI dataset (which is a collection of 60, 000
faces from the web) are selected as a training set while the rest of the images are used for validation.
In each trial 3 box filters are selected using the L2-boosting procedure. Within each round of feature
selection a total of 20 feature evaluations are allowed. The default version of the LMA is used as
a mode of comparison. After collecting samples from 100 episodes of optimization, LSPI is able
to learn a policy that achieves a 2.66 fold greater reduction in total loss than the LMA on a test set
of faces from the GENKI dataset (see Figure 3). Since the LMA does not move to a new random
part of the state space a more fair comparison can be drawn to our method without access to this
action which still results in a 20% greater reduction in total loss than the LMA. Figure 3 shows that



Performance on Smile Detection as a function of Budget

- - -Learned Method

— Default LMA
S
o | -
o 0.9} i
[J) Pide
= /
— ’
q’ 1
ho] ’
c )
) '
© |
o 0.85
<

085 10 20 30 40 50 60
Optimization Budget Per Feature Selection

Controller Type Average Reduction in Loss Relative to the LMA
Learned (history window = 1) 2.3
Learned (history window = 2) 2.66
Learned (no random restarts) 1.20
Learned on Classical (no random restarts) 1.19
Default LMA 1.0

Figure 3: Top: The performance on detecting smile versus not smile is substantially better when
using an optimization controller learned with our algorithm than using the default LMA. In each run
3 features are selected by the L2-boost procedure. The number of feature evaluations per feature
(the budget) varies along the x-axis. Bottom: This table describes the relative improvement in total
loss reduction for policies learned using our method.

the policies learned using our method achieve a substantial gain in performance for classification
on a validation set of test images (between .036 and .083 better A’). Additionally our results show
that adding additional information to the state space improves performance. Learning a policy that
uses a history window of error changes on the last two time steps is able to achieve a 15% greater
reduction in total loss than a policy learned with a history window of size 1. Using the error changes
over the last three time steps does not appear to yield significant improvement over using the last
two time steps.

The policies learned exhibit the following general trends. During early stages of feature selection
the learned policies either sample a new point in the feature space (if the error has increased from
the last iteration) or do an Levenberg-Marquardt step on the best point visited up until now (if
the error has gone down at the last iteration). Later in the optimization, the policy performs a
Levenberg-Marquardt step on the current best point no matter what the change in loss; this strategy
reflects the diminished utility of sampling a new part of the state space at a later stage in the feature
selection process. By examining the basis weights learned by LSPI we can see that the learned policy
favors discarding the last iterate versus keeping (similar to the LMA) and also that the policy favors
increasing the damping parameter when the error has increased on the last iteration and decreasing
the damping factor when the error has decreased (also similar to the LMA).

The state space formulation is general enough to allow policies learned on one type of optimization
problem to be applied to other optimization domains. The optimization controllers learned in the
classical least squares minimization task achieve a 19% improvement over the standard LMA on the
smile detection task. Applying the controllers learned on the smile detection task to the classical
least squares problem yields a more modest 6% improvement. These results support the claim that
our method is extracting useful structure for optimizing under a fixed budget and not simply learning
a controller that is amenable to a particular problem domain.




5 Conclusion

We have presented a novel approach to the problem of learning optimization procedures for opti-
mization on a fixed budget. While we have shown that our approach achieves dramatically better
performance than ubiquitous methods for non-linear least squares optimization on the task of opti-
mizing within a fixed budget of function evaluations there is likely a great deal of room for improve-
ment. For instance, by incorporating domain specific features into the state space richer policies
might be learned. We also want to apply this technique to other problems in machine perception
such as finding feature point locations on a face that have high likelihood but also respect global
constraints on the relative position of these feature points. The hard real-time constraints of this
problem make it a particularly appropriate target for the methods presented in this document.

References

[1] K. Levenberg, “A method for the solution of certain problems in least squares,” Applied Math
Quarterly, 1944.

[2] D.Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” STAM Jour-
nal of Applied Mathematics, 1963.

[3] D. Cristinacce and T. F. Cootes, “Feature detection and tracking with constrained local mod-
els,” BMVC, pp. 929-938, 2006.

[4] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch, “Visual
modeling with a hand-held camera,” IJCV, vol. 59, no. 3, pp. 207-232, 2004.

[5] P. Beardsley, P. Torr, and A. Zisserman, “3d model acquisition from extended image se-
quences.” Proceedings of ECCV, pp. 683-695, 1996.

[6] V. V. Miagkikh and W. E. P. III, “Global search in combinatorial optimization using rein-
forcement learning algorithms,” in Proceedings of the Congress on Evolutionary Computation,
vol. 1. IEEE Press, 6-9 1999, pp. 189-196.

[7] L. M. Gambardella and M. Dorigo, “Ant-q: A reinforcement learning approach to the traveling
salesman problem,” in International Conference on Machine Learning, 1995, pp. 252-260.

[8] J. A. Boyan and A. W. Moore, “Learning evaluation functions for global optimization and
boolean satisfiability,” in AAAI/IAAIL, 1998, pp. 3—10.

[9] R. Moll, T.J. Perkins, and A. G. Barto, “Machine learning for subproblem selection,” in ICML
’00: Proceedings of the Seventeenth International Conference on Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 615-622.

[10] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine Learning
Research, 2003.

[11] H. B. Nielsen, “Uctp problems for unconstrained optimization,” Technical Report, Technical
University of Denmark, 2000.

[12] P. Viola and M. Jones, “Robust real-time object detection,” International Journal of Computer
Vision, 2002.

[13] P. Buhlmann and B. Yu, “Boosting with the 12 loss: Regression and classification,” Journal of
the American Statistical Association, 2003.



