Robustness and Regularization of Support Vector

Machines
Huan Xu Constantine Caramanis
ECE, McGill University ECE, The University of Texas at Austin
Montreal, QC, Canada Austin, TX, USA
xuhuan@i mncgill.ca cncar amaece. ut exas. edu
Shie Mannor

ECE, McGill University
Montreal, QC Canada
shi e. mannor @xgi l | . ca

Abstract

We consider a robust classification problem and show thatlaral regularized
SVM is a special case of our formulation, providing an expliok between reg-

ularization and robustness. At the same time, the physicaiection of noise and
robustness suggests the potential for a broad new familghnfat classification
algorithms. Finally, we show that robustness is a fundaaigmoperty of classi-

fication algorithms, by re-proving consistency of supp@tter machines using
only robustness arguments (instead of VC dimension orlgtgbi

1 Introduction

Support Vector Machines or SVMs [1, 2] find the hyperplandmfeature space that achieves max-
imum sample margin in the separable case. When the samplestseparable, a penalty term that
approximates the total training-error is considered [8 Wwell known that minimizing the training
error itself can lead to poor classification performance&w unlabeled data because of, essentially,
overfitting [4]. One of the most popular methods proposedotmizat this problem is minimizing

a combination of the training-error and a regularizatiomte The resulting regularized classifier
performs better on new data. This phenomenon is often irgtg from a statistical learning theory
view: the regularization term restricts the complexity loé tclassifier, hence the deviation of the
testing error and the training error is controlled [5, 6, 7].

We consider a different setup, assuming that some non-aite(gially adversarial) disturbance is
added to the training samples we observe. We follow a rokptshization approach (e.g., [8, 9])
minimizing the worst possible empirical error under sucstutibances. The use of robust opti-
mization in classification is not new (e.g., [10, 11]). Padtust classification models consider only
box-type uncertainty sets, which allow the possibilitytttitee data have all been skewed in some
non-neutral manner. We develop a new robust classificat@mdwork that treats non box-type
uncertainty sets, mitigates conservatism, and providesplicit connection to regularization. Our
contributions include:

¢ \We show that the standard regularized SVM classifier is aiapegse of our robust classi-
fication, thus explicitly relating robustness and regualation. This provides an alternative
explanation to the success of regularization, and alsoestiggnew physically-motivated
ways to construct regularizers.

e Our robust SVM formulation permits finer control of the adsaaial disturbance, restricting
it to satisfy aggregate constraints across data pointefibre controlling the conservatism.



¢ We show that the robustness perspective, stemming from dichanalysis, can be useful
in a standard iid setup, by using it to give a new proof of cstesicy for standard SVM
classification. This result implies that generalizatioilighis a direct result of robustness
to local disturbances, and we can construct learning dlgos that generalize well by
robustifying non-consistent algorithms.

We explain here how the explicit equivalence of robustneskragularization we derive differs
from previous work, and why it is interesting. While certaiquivalence relationships between ro-
bustness and regularization have been established folepnsloutside the machine learning field
([8, 9]), their results do not directly apply to the classition problem. Research on classifier reg-
ularization mainly focuses on bounding the complexity & thnction class (e.g., [5, 6, 7]). Mean-
while, research on robust classification has not attemptaélate robustness and regularization
(e.g., [10, 11, 12]), in part due to the robustness formaifetiused there.

The connection of robustness and regularization in the S@¥Maext is important for the following
reasons. It gives an alternative and potentially powerfplanation of the generalization ability of
the regularization term. In the classical machine leartitegature, the regularization term bounds
the complexity of the class of classifiers. The robust viewegllarization regards the testing sam-
ples as a perturbed copy of the training samples. We showvhexh the total perturbation is given
or bounded, the regularization term bounds the gap betweedassification errors of the SVM on
these two sets of samples. In contrast to the standard PAagp this bound depends neither
on how rich the class of candidate classifiers is, nor on amagson that all samples are picked
in an i.i.d. manner. In addition, this suggests novel apgnea to designing good classification
algorithms, in particular, designing the regularizatienrm. In Section 3 we use this new view to
provide a novel proof of consistency that does not rely ondi@ension or stability arguments.
In the PAC structural-risk minimization approach, regidation is chosen to minimize a bound on
the generalization error based on the training error andnaptaxity term. This complexity term
typically leads to overly emphasizing the regularizer, entbed this approach is known to often be
too pessimistic ([13]). The robust approach offers anotfvenue. Since both noise and robustness
are physical processes, a close investigation of the atjgitand noise characteristics at hand, can
provide insights into how to properly robustify, and therefregularize the classifier. For example,
it is widely known that normalizing the samples so that thearece among all features are roughly
the same often leads to good generalization performancem fEne robustness perspective, this
simply says that the noise is skewed (ellipsoidal) rathantspherical, and hence an appropriate
robustification must be designed to fit the skew of the physic&se process.

Notation: Capital letters and boldface letters are used to denotdaeatand column vectors, re-
spectively. For a given norrh- ||, we usel| - |* to denote its dual norm. The set of integers from
to n is denoted byl : n].

2 Robust Classification and Regularization

We consider the standard binary classification problemrevive are given a finite number of train-
ing samplegx;,y;}7, C R"x{—1,+1},and mustfind a linear classifier, specified by the function
hY?(x) = sgn({w, x) + b). For the standard regularized classifier, the paraméters) are ob-
tained by solving the following convex optimization protvle

131? {r(w, b) + ;max [1—yi((w,x;) +b),0] }

wherer(w, b) is a regularization term. Previous robust classificatiomkW@0, 14] considers the

classification problem where the input are subject to (umkﬂaﬂisturbancegz (61,...,0,,) and
essentially solves the following mini-max problem:

rvr‘lllil S’?ﬁ/ﬁx {r(w, b) + ; max [1 -y ((w, x; — 8;) + b), O] }, (1)

for a box-type uncertainty sét,... That is, let\; denote the projection 0¥/}, onto thed; com-
ponent, thenVpo, = N1 X - - - x Np,,. Effectively, this allows simultaneous worst-case disaurces



across many samples, and leads to overly conservative@wufThe goal of this paper is to obtain
a robust formulation where the disturbangés} may be meaningfully taken to be correlated, i.e.,
to solve for a non-box-typa/:

min %ne%\)f( {T(W, b) + ; max [1 — y;((w,x; — 8;) +b), 0] } 2
We define explicitly the correlated disturbance (or unéetyawhich we study below.
Definition 1. 1. Aset Ny C R™iscalled an Atomic Uncertainty Seif
() 0e N; () sup [w'é] = sup [-w'd] < oo, YweR"™
8eNy 8'eNo

2. Let N be an atomic uncertainty set. A set N' C R™*™ is called a Concave Correlated
Uncertainty SeCCUS) of Ny, if N\~ C N C N T. Here

N_éUj\/t77 j\/tié (617"'7617'7,)'6156-/\[0; 6z7ﬁt207}
t=1

Nt £ {(alél,--- ,amém)|2ai =1; o; >0, &; 6./\/0, Vi}.

=1

The concave correlated uncertainty definition models tise wehere the disturbances on each sam-
ple are treated identically, but their aggregate behawooss multiple samples is controlled. In
particular{ (81, ,8,)| Yoim; [16:]] < c} is @ CCUS withVy = {8][|6]| < c}.

Theorem 1. Assume {x;,y;}™, are non-separable, r(-) : R"™! — R is an arbitrary function,
N isa CCUSwith corresponding atomic uncertainty set Ap. Then the following two problems are
equivalent:

min su r(w,b) + max |1 —y;((w,x; — ;) +b), 0] ¢; 3
s {rnb) 3 max 1w )40, 0 @
min : r(w,b) + sup (w'd)+ i 4
miy (w.b) + sup (w'6) ;s (4)
s.t. &E>1—[y({w, x)+Db)], i=1,...,m;

&>0, i=1,....,m.

Proof. We outline the proof. Let(w, b) £ supsc, (W' ) + >0 max [1 — y;((w,x;) +b), 0].
It suffices to show that for angw, b) € R+,

v(w,b) < sup Zmax 11—y ((W,x; — &;) + b), 0]. (5)
(81, ,0m)EN— =1

sup Zmax [1—yi((W,x; — 8;) + b), 0] < w(w, b). (6)

(51,"' ,ém)€N+ i=1
Since the samplegx;, y;}/, are not separable, there existsc [1 : m| such thaty, ((W, x:) +
b) < 0. With some algebra, we hawep 5, 5 oy doiey max [1—y;((W,x; — 8;) +b), 0] =

v(W, b). SinceN;z C N~, Inequality (5) follows. Establishing Inequality (6) isstlard. O

The following corollary thus shows regularized SVM is a spkcase of robust classification.
Corollary 1. Let 7 = {(61,---6m)|2f;1 16:] < c}. If the training samples {x;, y;}!", are
non-separable, then the following two optimization problems on (w, b) are equivalent:

r‘{lvl? : (51,'{1,1?;()6% ;max [1—y;((w, x; — 6;) +b),0], @)
Ivlyl? CHWH*-FZmaX [1_yi(<W7 Xi>+b),0}. (8)

i=1



This corollary explains the widely known fact that the reagided classifier tends to be robust. It also

suggests that the appropriate way to regularize should é@mea disturbance-robustness perspec-
tive, e.g., by examining the variation of the data and s@\ire corresponding robust classification

problem.

Corollary 1 can be easily generalize to a kernelized versien a linear classifier in the feature
spaceH that is defined as a Hilbert space containing the range of $eatere mappin@(-).

Corollary 2. Let 7, = {(61,---6m)|zz’;1 16:]1n < c} If {®(x;),y;}!™, are non-separable,
then the following two optimization problems on (w, b) are equivalent

min 5, T8 ; max [1 —y; ((w, ®(x;) — &) +0),0], 9
Hliil : CHWHH—i—ZmaX [1—y;((w, ®(x;)) +b),0]. (10)
’ i=1

Here, || - || stands for the RKHS norm, which is self-dual. Corollary 2eedilly says that the
standard kernelized SVM is implicitly a robust classifiettwdisturbancein the feature-space. Dis-
turbance in the feature-space is less intuitive than disiuce in the sample space. However, the
next lemma relates these two different setups: under oectaiditions, a classifier that achieves
robustness in the feature space (the SVM for example) atseas robustness in the sample space.
The proof is straightforward and omitted.

Lemma 1. Suppose there exist X C R™, p > 0, and a continuous non-decreasing function f :
RT — R* satisfying f(0) = 0, such that

k(X,X) + k(X/,X/) - 2]{3(X, X/) < f(”X - X/Hg)v \V/X, X/ € Xa ||X - X/”2 < p-

2% +68) = 2X)[ln <1/ £([I0]3), VIIdll2<p, X%+ €X.

3 Consistency of Regularization

Then

In this section we explore a fundamental connection betweaming and robustness, by using
robustness properties to re-prove the statistical carsigtof the linear classifier, and then the ker-
nelized SVM. Indeed, our proof mirrors the consistency pfoond in [15], with the key difference
thatwe replace metric entropy, VC-dimension, and stability used there, with robustness. In contrast

to these standard techniques which often work for a limiéede of algorithms, robustness argument
works for a much wider range of algorithms and allows a unidipdroach to show consistency.

Thus far we have considered the setup where the trainingllsanare corrupted by certain set-
inclusive disturbances, and now we turn to the standartsttal learning setup. That s, lét C

R™ be bounded, and suppose the training samfptesy;)$°, are generated i.i.d. according to an
unknown distributior” supported o x {—1, +1}. The next theorem shows that our robust
classifier setup and equivalently regularized SVM minimmiae asymptotical upper-bound of the
expected classification error and hinge loss.

Theorem 2. Denote K 2 maxyex k(x,x). Suppose there exist p > 0 and a continuous non-
decreasing function f : Rt — R™T satisfying f(0) = 0, such that:
k(x,x) + k(X' x) = 2k(x,x") < f(x =X |3), Vx,x € X,[x—x|]2 < p.

Then there existsa randomsequence {~,,, .} independent of PP such that, Ve > 0, limy,— 00 Yim,c = 0,
almost surely, and V(w, b) € H x R, the following bounds on the Bayesloss and the hinge loss hold

IEIP’(]-y7'$sgn((w7 ‘I’(X)H-b)) < Ymye + CHWHH + E Z max [1 - yl(<wv (I)(Xl)> + b)v OL
1=1

E(x.g)~p (max(1 — y((w, ®(x)) +b), 0)) <

1 m
Ym,e(1+ KWl + 1)) + ellwllr + — > max [1 - yi((w, ®(x;)) +1b),0].
i=1



Proof. Step 1: We first prove the theorem for a non-kernelized case. We ix-a0 and drop the
subscripte of 7, .. A testing sampléx’, y’) and a training sampléx, y) are called aample pair
if y = ¢’ and|jx — x'||]2 < ¢. We say a set of training samples and a set of testing sangied f
pairings if there exist sample pairs with no data reused. Givertraining samples anth testing
samples, we us#/,, to denote the largest number of pairings.

Lemma 2. Given ¢ > 0, M,,,/m — 1 almost surely asm — +o0, uniformly w.r.t. P.

Proof. We provide a proof sketch. Partitioti into finite (sayT’) sets such that if a training sample
and a testing sample fall into one set, they form a pairings iBdoable due to finite-dimensionality
of the sample space. L&t/ andN/® be the number of training samples and testing samplesdallin
in thei" set, respectively. ThugN{",--- , N&) and(N{¢, - - - | N1¢) are multinomially distributed
random vectors following a same distribution. It is strafighward to show thaﬁjle \Ni" —

Nfe|/m — 0 with probability one (e.g., Bretagnolle-Huber-Carol inatity), and hencé/,,,/m —
1 almost surely. Moreover, the convergence rate does nondepeP. O

Now we proceed to prove the theorem. W&t = {J| ||0]] < ¢}. Givenm training samples and:
testing samples witi/,,, sample pairs, for these paired samples, both the totah¢estror and the
total testing hinge-loss are upper bounded by

e iy 2™ (L= i i = 81) £0),0)

SCWL”VVHQ + Zmax [1 - yl(<wv xi> + b)a O]
=1

Hence the average testing error (including unpaired osag)per bounded by

171
1— M, - 1 —yi((w, x;) +b), 0].
/m+0HWH2+m;maX[ yi((w, x;) +b), 0]

Sincemaxxex (1 — y((w,x))) < 1+ |b| + K| w||2, the average hinge loss is upper bounded by

(1= My /m)(1 + Kllwllz +[b]) + c[[wl2 + % ZmaX [1 = yi({w, xi) +),0].

The proof follows sincé\/,, /m — 1 almost surely.

Step 2Now we generalize the result to a kernelized version. Shhgilae lower-bound the number
of sample pairs in the feature-space. The multinomial random variable argument used in the proof
of Lemma 2 breaks down, due to possible infinite-dimensignal the feature space. Nevertheless,
we are able to lower bound the number of sample pairs in theifeapace by the number of
sample pairs in theample space. Define f~!(a) £ max{3 > 0|f(3) < a}. Sincef(-) is
continuous,f~!(a) > 0 for anya > 0. By Lemma 1, ifx andx’ belong to a hyper-cube of length
min(p//n, f~(c?)/\/n) in thesample space, then||®(x) — ®(x’)|l# < c. Hence the number of
sample pairsin the feature space is lower bounded by the number of pasaraples that fall in the
same hyper-cube in the sample space. We can cbwaith finitely many such hyper-cubes since
f~1(c?) > 0. The rest of the proof is identical to Step 1. O

Notice that the condition in Theorem 2 requires that theufigatapping is “smooth” and hence
preserves “locality” of the disturbance, i.e., small dibance in the sample space guarantees the
corresponding disturbance in the feature space is alsd.sfiails condition is satisfied by most
widely used kernels, e.g., homogeneous polynominal keraeld Gaussian RBF. It is easy to con-
struct non-smooth kernel functions which do not generaligk. For example, consider the follow-
ing kernelk(x,x") = 1(x—x), i.6.,k(x,x") = 1if x = x’, and zero otherwise. A standard RKHS
regularized SVM leads to the a decision functitan (> | a;k(x, x;) + b), which equalsign(b)

and provides no meaningful prediction if the testing sampis not one of the training samples.
Hence asn increases, the testing error remains as larg@@sregardless of the tradeoff parameter
used in the algorithm, while the training error can be aabiy small by fine-tuning the parameter.



Theorem 2 can further lead to the standard consistencymoat@, convergence to the Bayes Risk
([25]). The proof in [15] involves a step showing that the eged hinge loss of the minimizer of
the regularizedraining hinge loss concentrates around the empirical regularizegehoss, accom-
plished using concentration inequalities derived from 8i@ension considerations, and stability
considerations. Instead, we can use our robustness-beseltlsrof Theorem 2 to replace these
approaches. The detailed proof is omitted due to spaceslimit

4 Concluding Remarks

This work considers the relationship between robustnegsegularized SVM classification. In par-
ticular, we prove that the standard norm-regularized SVassifier is in fact the solution to a robust
classification setup, and thus known results about regaldiglassifiers extend to robust classifiers.
To the best of our knowledge, this is the first explicit suctk Ibetween regularization and robust-
ness in pattern classification. This link suggests that Aoased regularization essentially builds
in a robustness to sample noise whose probability levelasetsymmetric, and moreover have the
structure of the unit ball with respect to the dual of the tagming norm. It would be interesting
to understand the performance gains possible when the do&s® not have such characteristics,
and the robust setup is used in place of regularization vaphr@priately defined uncertainty set. In
addition, based on the robustness interpretation of thelaggation term, we re-proved the con-
sistency of SVMs without direct appeal to notions of metmtrepy, VC-dimension, or stability.
Our proof suggests that the ability to handle disturbancedsial for an algorithm to achieve good
generalization ability.
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