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Abstract

We consider a robust classification problem and show that standard regularized
SVM is a special case of our formulation, providing an explicit link between reg-
ularization and robustness. At the same time, the physical connection of noise and
robustness suggests the potential for a broad new family of robust classification
algorithms. Finally, we show that robustness is a fundamental property of classi-
fication algorithms, by re-proving consistency of support vector machines using
only robustness arguments (instead of VC dimension or stability).

1 Introduction

Support Vector Machines or SVMs [1, 2] find the hyperplane in the feature space that achieves max-
imum sample margin in the separable case. When the samples are not separable, a penalty term that
approximates the total training-error is considered [3]. It is well known that minimizing the training
error itself can lead to poor classification performance fornew unlabeled data because of, essentially,
overfitting [4]. One of the most popular methods proposed to combat this problem is minimizing
a combination of the training-error and a regularization term. The resulting regularized classifier
performs better on new data. This phenomenon is often interpreted from a statistical learning theory
view: the regularization term restricts the complexity of the classifier, hence the deviation of the
testing error and the training error is controlled [5, 6, 7].

We consider a different setup, assuming that some non-iid (potentially adversarial) disturbance is
added to the training samples we observe. We follow a robust optimization approach (e.g., [8, 9])
minimizing the worst possible empirical error under such disturbances. The use of robust opti-
mization in classification is not new (e.g., [10, 11]). Past robust classification models consider only
box-type uncertainty sets, which allow the possibility that the data have all been skewed in some
non-neutral manner. We develop a new robust classification framework that treats non box-type
uncertainty sets, mitigates conservatism, and provides anexplicit connection to regularization. Our
contributions include:

• We show that the standard regularized SVM classifier is a special case of our robust classi-
fication, thus explicitly relating robustness and regularization. This provides an alternative
explanation to the success of regularization, and also suggests new physically-motivated
ways to construct regularizers.

• Our robust SVM formulation permits finer control of the adversarial disturbance, restricting
it to satisfy aggregate constraints across data points, therefore controlling the conservatism.
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• We show that the robustness perspective, stemming from a non-iid analysis, can be useful
in a standard iid setup, by using it to give a new proof of consistency for standard SVM
classification. This result implies that generalization ability is a direct result of robustness
to local disturbances, and we can construct learning algorithms that generalize well by
robustifying non-consistent algorithms.

We explain here how the explicit equivalence of robustness and regularization we derive differs
from previous work, and why it is interesting. While certainequivalence relationships between ro-
bustness and regularization have been established for problems outside the machine learning field
([8, 9]), their results do not directly apply to the classification problem. Research on classifier reg-
ularization mainly focuses on bounding the complexity of the function class (e.g., [5, 6, 7]). Mean-
while, research on robust classification has not attempted to relate robustness and regularization
(e.g., [10, 11, 12]), in part due to the robustness formulations used there.

The connection of robustness and regularization in the SVM context is important for the following
reasons. It gives an alternative and potentially powerful explanation of the generalization ability of
the regularization term. In the classical machine learningliterature, the regularization term bounds
the complexity of the class of classifiers. The robust view ofregularization regards the testing sam-
ples as a perturbed copy of the training samples. We show thatwhen the total perturbation is given
or bounded, the regularization term bounds the gap between the classification errors of the SVM on
these two sets of samples. In contrast to the standard PAC approach, this bound depends neither
on how rich the class of candidate classifiers is, nor on an assumption that all samples are picked
in an i.i.d. manner. In addition, this suggests novel approaches to designing good classification
algorithms, in particular, designing the regularization term. In Section 3 we use this new view to
provide a novel proof of consistency that does not rely on VC-dimension or stability arguments.
In the PAC structural-risk minimization approach, regularization is chosen to minimize a bound on
the generalization error based on the training error and a complexity term. This complexity term
typically leads to overly emphasizing the regularizer, andindeed this approach is known to often be
too pessimistic ([13]). The robust approach offers anotheravenue. Since both noise and robustness
are physical processes, a close investigation of the application and noise characteristics at hand, can
provide insights into how to properly robustify, and therefore regularize the classifier. For example,
it is widely known that normalizing the samples so that the variance among all features are roughly
the same often leads to good generalization performance. From the robustness perspective, this
simply says that the noise is skewed (ellipsoidal) rather than spherical, and hence an appropriate
robustification must be designed to fit the skew of the physical noise process.

Notation: Capital letters and boldface letters are used to denote matrices and column vectors, re-
spectively. For a given norm‖ · ‖, we use‖ · ‖∗ to denote its dual norm. The set of integers from1
to n is denoted by[1 : n].

2 Robust Classification and Regularization

We consider the standard binary classification problem, where we are given a finite number of train-
ing samples{xi, yi}m

i=1 ⊆ R
n×{−1, +1}, and must find a linear classifier, specified by the function

hw,b(x) = sgn(〈w, x〉 + b). For the standard regularized classifier, the parameters(w, b) are ob-
tained by solving the following convex optimization problem:

min
w,b

{

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi〉 + b), 0
]

}

.

wherer(w, b) is a regularization term. Previous robust classification work [10, 14] considers the
classification problem where the input are subject to (unknown) disturbances~δ = (δ1, . . . , δm) and
essentially solves the following mini-max problem:

min
w,b

max
~δ∈Nbox

{

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

}

, (1)

for a box-type uncertainty setNbox. That is, letNi denote the projection ofNbox onto theδi com-
ponent, thenNbox = N1 × · · · × Nm. Effectively, this allows simultaneous worst-case disturbances
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across many samples, and leads to overly conservative solutions. The goal of this paper is to obtain
a robust formulation where the disturbances{δi} may be meaningfully taken to be correlated, i.e.,
to solve for a non-box-typeN :

min
w,b

max
~δ∈N

{

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

}

. (2)

We define explicitly the correlated disturbance (or uncertainty) which we study below.
Definition 1. 1. A set N0 ⊆ R

n is called an Atomic Uncertainty Setif

(I) 0 ∈ N0; (II) sup
δ∈N0

[

w
⊤

δ
]

= sup
δ′∈N0

[

− w
⊤

δ
′
]

< ∞, ∀w ∈ R
n.

2. Let N0 be an atomic uncertainty set. A set N ⊆ R
n×m is called a Concave Correlated

Uncertainty Set(CCUS) of N0, if N− ⊆ N ⊆ N+. Here

N− ,

m
⋃

t=1

N−
t ; N−

t , {(δ1, · · · , δm)|δt ∈ N0; δi6=t = 0; }

N+ , {(α1δ1, · · · , αmδm)|
m

∑

i=1

αi = 1; αi ≥ 0, δi ∈ N0, ∀ i}.

The concave correlated uncertainty definition models the case where the disturbances on each sam-
ple are treated identically, but their aggregate behavior across multiple samples is controlled. In
particular,{(δ1, · · · , δm)|∑m

i=1 ‖δi‖ ≤ c} is a CCUS withN0 =
{

δ
∣

∣ ‖δ‖ ≤ c
}

.

Theorem 1. Assume {xi, yi}m
i=1 are non-separable, r(·) : R

n+1 → R is an arbitrary function,
N is a CCUS with corresponding atomic uncertainty set N0. Then the following two problems are
equivalent:

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

}

; (3)

min
w,b

: r(w, b) + sup
δ∈N0

(w⊤
δ) +

m
∑

i=1

ξi, (4)

s.t. : ξi ≥ 1 − [yi(〈w, xi〉 + b)], i = 1, . . . , m;

ξi ≥ 0, i = 1, . . . , m.

Proof. We outline the proof. Letv(w, b) , supδ∈N0
(w⊤δ)+

∑m

i=1 max
[

1− yi(〈w,xi〉+ b), 0
]

.

It suffices to show that for any(ŵ, b̂) ∈ R
n+1,

v(ŵ, b̂) ≤ sup
(δ1,··· ,δm)∈N−

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

. (5)

sup
(δ1,··· ,δm)∈N+

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

≤ v(ŵ, b̂). (6)

Since the samples{xi, yi}m
i=1 are not separable, there existst∗ ∈ [1 : m] such thatyt∗(〈ŵ,xt∗〉 +

b̂) < 0. With some algebra, we havesup(δ1,··· ,δm)∈N−

t∗

∑m

i=1 max
[

1− yi(〈ŵ,xi − δi〉+ b̂), 0
]

=

v(ŵ, b̂). SinceN−
t∗ ⊆ N−, Inequality (5) follows. Establishing Inequality (6) is standard.

The following corollary thus shows regularized SVM is a special case of robust classification.

Corollary 1. Let T ,

{

(δ1, · · ·δm)|∑m

i=1 ‖δi‖ ≤ c
}

. If the training samples {xi, yi}m
i=1 are

non-separable, then the following two optimization problems on (w, b) are equivalent:

min
w,b

: max
(δ1,··· ,δm)∈Tk

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

, (7)

min
w,b

: c‖w‖∗ +

m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

. (8)
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This corollary explains the widely known fact that the regularized classifier tends to be robust. It also
suggests that the appropriate way to regularize should comefrom a disturbance-robustness perspec-
tive, e.g., by examining the variation of the data and solving the corresponding robust classification
problem.

Corollary 1 can be easily generalize to a kernelized version, i.e., a linear classifier in the feature
spaceH that is defined as a Hilbert space containing the range of somefeature mappingΦ(·).
Corollary 2. Let TH ,

{

(δ1, · · · δm)|∑m

i=1 ‖δi‖H ≤ c
}

. If {Φ(xi), yi}m
i=1 are non-separable,

then the following two optimization problems on (w, b) are equivalent

min
w,b

: max
(δ1,··· ,δm)∈Tk

m
∑

i=1

max
[

1 − yi

(

〈w, Φ(xi) − δi〉 + b
)

, 0
]

, (9)

min
w,b

: c‖w‖H +

m
∑

i=1

max
[

1 − yi

(

〈w, Φ(xi)〉 + b
)

, 0
]

. (10)

Here,‖ · ‖H stands for the RKHS norm, which is self-dual. Corollary 2 essentially says that the
standard kernelized SVM is implicitly a robust classifier with disturbance in the feature-space. Dis-
turbance in the feature-space is less intuitive than disturbance in the sample space. However, the
next lemma relates these two different setups: under certain conditions, a classifier that achieves
robustness in the feature space (the SVM for example) also achieves robustness in the sample space.
The proof is straightforward and omitted.
Lemma 1. Suppose there exist X ⊆ R

n, ρ > 0, and a continuous non-decreasing function f :
R

+ → R
+ satisfying f(0) = 0, such that

k(x,x) + k(x′,x′) − 2k(x,x′) ≤ f(‖x− x
′‖2

2), ∀x,x′ ∈ X , ‖x − x
′‖2 ≤ ρ.

Then

‖Φ(x̂ + δ) − Φ(x̂)‖H ≤
√

f(‖δ‖2
2), ∀‖δ‖2 ≤ ρ, x̂, x̂ + δ ∈ X .

3 Consistency of Regularization

In this section we explore a fundamental connection betweenlearning and robustness, by using
robustness properties to re-prove the statistical consistency of the linear classifier, and then the ker-
nelized SVM. Indeed, our proof mirrors the consistency proof found in [15], with the key difference
thatwe replace metric entropy, VC-dimension, and stability used there, with robustness. In contrast
to these standard techniques which often work for a limited range of algorithms, robustness argument
works for a much wider range of algorithms and allows a unifiedapproach to show consistency.

Thus far we have considered the setup where the training-samples are corrupted by certain set-
inclusive disturbances, and now we turn to the standard statistical learning setup. That is, letX ⊆
R

n be bounded, and suppose the training samples(xi, yi)
∞
i=1 are generated i.i.d. according to an

unknown distributionP supported onX × {−1, +1}. The next theorem shows that our robust
classifier setup and equivalently regularized SVM minimizes an asymptotical upper-bound of the
expected classification error and hinge loss.

Theorem 2. Denote K , maxx∈X k(x,x). Suppose there exist ρ > 0 and a continuous non-
decreasing function f : R

+ → R
+ satisfying f(0) = 0, such that:

k(x,x) + k(x′,x′) − 2k(x,x′) ≤ f(‖x− x
′‖2

2), ∀x,x′ ∈ X , ‖x − x
′‖2 ≤ ρ.

Then there exists a random sequence {γm,c} independent of P such that, ∀c > 0, limm→∞ γm,c = 0,
almost surely, and ∀(w, b) ∈ H×R, the following bounds on the Bayes loss and the hinge loss hold

EP(1y 6=sgn(〈w, Φ(x)〉+b)) ≤ γm,c + c‖w‖H +
1

m

m
∑

i=1

max
[

1 − yi(〈w, Φ(xi)〉 + b), 0
]

,

E(x,y)∼P

(

max(1 − y(〈w, Φ(x)〉 + b), 0)
)

≤

γm,c(1 + K‖w‖H + |b|) + c‖w‖H +
1

m

m
∑

i=1

max
[

1 − yi(〈w, Φ(xi)〉 + b), 0
]

.
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Proof. Step 1: We first prove the theorem for a non-kernelized case. We fix ac > 0 and drop the
subscriptc of γm,c. A testing sample(x′, y′) and a training sample(x, y) are called asample pair
if y = y′ and‖x − x

′‖2 ≤ c. We say a set of training samples and a set of testing samples form l
pairings if there existl sample pairs with no data reused. Givenm training samples andm testing
samples, we useMm to denote the largest number of pairings.

Lemma 2. Given c > 0, Mm/m → 1 almost surely as m → +∞, uniformly w.r.t. P.

Proof. We provide a proof sketch. PartitionX into finite (sayT ) sets such that if a training sample
and a testing sample fall into one set, they form a pairing. This is doable due to finite-dimensionality
of the sample space. LetN tr

i andN te
i be the number of training samples and testing samples falling

in theith set, respectively. Thus,(N tr
1 , · · · , N tr

T ) and(N te
1 , · · · , N te

T ) are multinomially distributed
random vectors following a same distribution. It is straightforward to show that

∑T

i=1

∣

∣N tr
i −

N te
i

∣

∣/m → 0 with probability one (e.g., Bretagnolle-Huber-Carol inequality), and henceMm/m →
1 almost surely. Moreover, the convergence rate does not depend onP.

Now we proceed to prove the theorem. LetN0 = {δ | ‖δ‖ ≤ c}. Givenm training samples andm
testing samples withMm sample pairs, for these paired samples, both the total testing error and the
total testing hinge-loss are upper bounded by

max
(δ1,··· ,δm)∈N0×···×N0

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

≤cm‖w‖2 +

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0].

Hence the average testing error (including unpaired ones) is upper bounded by

1 − Mm/m + c‖w‖2 +
1

m

n
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0].

Sincemaxx∈X (1 − y(〈w,x〉)) ≤ 1 + |b| + K‖w‖2, the average hinge loss is upper bounded by

(1 − Mm/m)(1 + K‖w‖2 + |b|) + c‖w‖2 +
1

m

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0
]

.

The proof follows sinceMm/m → 1 almost surely.

Step 2:Now we generalize the result to a kernelized version. Similarly we lower-bound the number
of sample pairs in the feature-space. The multinomial random variable argument used in the proof
of Lemma 2 breaks down, due to possible infinite-dimensionality of the feature space. Nevertheless,
we are able to lower bound the number of sample pairs in the feature space by the number of
sample pairs in thesample space. Definef−1(α) , max{β ≥ 0|f(β) ≤ α}. Sincef(·) is
continuous,f−1(α) > 0 for anyα > 0. By Lemma 1, ifx andx

′ belong to a hyper-cube of length
min(ρ/

√
n, f−1(c2)/

√
n) in thesample space, then‖Φ(x) − Φ(x′)‖H ≤ c. Hence the number of

sample pairs in the feature space is lower bounded by the number of pairs ofsamples that fall in the
same hyper-cube in the sample space. We can coverX with finitely many such hyper-cubes since
f−1(c2) > 0. The rest of the proof is identical to Step 1.

Notice that the condition in Theorem 2 requires that the feature mapping is “smooth” and hence
preserves “locality” of the disturbance, i.e., small disturbance in the sample space guarantees the
corresponding disturbance in the feature space is also small. This condition is satisfied by most
widely used kernels, e.g., homogeneous polynominal kernels, and Gaussian RBF. It is easy to con-
struct non-smooth kernel functions which do not generalizewell. For example, consider the follow-
ing kernelk(x,x′) = 1(x=x

′), i.e.,k(x,x′) = 1 if x = x
′, and zero otherwise. A standard RKHS

regularized SVM leads to the a decision functionsign(
∑m

i=1 αik(x,xi) + b), which equalssign(b)
and provides no meaningful prediction if the testing samplex is not one of the training samples.
Hence asm increases, the testing error remains as large as50% regardless of the tradeoff parameter
used in the algorithm, while the training error can be arbitrarily small by fine-tuning the parameter.
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Theorem 2 can further lead to the standard consistency notion, i.e., convergence to the Bayes Risk
([15]). The proof in [15] involves a step showing that the expected hinge loss of the minimizer of
the regularizedtraining hinge loss concentrates around the empirical regularized hinge loss, accom-
plished using concentration inequalities derived from VC-dimension considerations, and stability
considerations. Instead, we can use our robustness-based results of Theorem 2 to replace these
approaches. The detailed proof is omitted due to space limits.

4 Concluding Remarks

This work considers the relationship between robustness and regularized SVM classification. In par-
ticular, we prove that the standard norm-regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regularized classifiers extend to robust classifiers.
To the best of our knowledge, this is the first explicit such link between regularization and robust-
ness in pattern classification. This link suggests that norm-based regularization essentially builds
in a robustness to sample noise whose probability level setsare symmetric, and moreover have the
structure of the unit ball with respect to the dual of the regularizing norm. It would be interesting
to understand the performance gains possible when the noisedoes not have such characteristics,
and the robust setup is used in place of regularization with appropriately defined uncertainty set. In
addition, based on the robustness interpretation of the regularization term, we re-proved the con-
sistency of SVMs without direct appeal to notions of metric entropy, VC-dimension, or stability.
Our proof suggests that the ability to handle disturbance iscrucial for an algorithm to achieve good
generalization ability.
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